pyspark.ml.fpm.
FPGrowth
A parallel FP-growth algorithm to mine frequent itemsets.
New in version 2.2.0.
Notes
The algorithm is described in Li et al., PFP: Parallel FP-Growth for Query Recommendation [1]. PFP distributes computation in such a way that each worker executes an independent group of mining tasks. The FP-Growth algorithm is described in Han et al., Mining frequent patterns without candidate generation [2]
NULL values in the feature column are ignored during fit().
Internally transform collects and broadcasts association rules.
Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. 2008. Pfp: parallel fp-growth for query recommendation. In Proceedings of the 2008 ACM conference on Recommender systems (RecSys ‘08). Association for Computing Machinery, New York, NY, USA, 107–114. DOI: https://doi.org/10.1145/1454008.1454027
Jiawei Han, Jian Pei, and Yiwen Yin. 2000. Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 2 (June 2000), 1–12. DOI: https://doi.org/10.1145/335191.335372
Examples
>>> from pyspark.sql.functions import split >>> data = (spark.read ... .text("data/mllib/sample_fpgrowth.txt") ... .select(split("value", "\s+").alias("items"))) >>> data.show(truncate=False) +------------------------+ |items | +------------------------+ |[r, z, h, k, p] | |[z, y, x, w, v, u, t, s]| |[s, x, o, n, r] | |[x, z, y, m, t, s, q, e]| |[z] | |[x, z, y, r, q, t, p] | +------------------------+ ... >>> fp = FPGrowth(minSupport=0.2, minConfidence=0.7) >>> fpm = fp.fit(data) >>> fpm.setPredictionCol("newPrediction") FPGrowthModel... >>> fpm.freqItemsets.show(5) +---------+----+ | items|freq| +---------+----+ | [s]| 3| | [s, x]| 3| |[s, x, z]| 2| | [s, z]| 2| | [r]| 3| +---------+----+ only showing top 5 rows ... >>> fpm.associationRules.show(5) +----------+----------+----------+----+------------------+ |antecedent|consequent|confidence|lift| support| +----------+----------+----------+----+------------------+ | [t, s]| [y]| 1.0| 2.0|0.3333333333333333| | [t, s]| [x]| 1.0| 1.5|0.3333333333333333| | [t, s]| [z]| 1.0| 1.2|0.3333333333333333| | [p]| [r]| 1.0| 2.0|0.3333333333333333| | [p]| [z]| 1.0| 1.2|0.3333333333333333| +----------+----------+----------+----+------------------+ only showing top 5 rows ... >>> new_data = spark.createDataFrame([(["t", "s"], )], ["items"]) >>> sorted(fpm.transform(new_data).first().newPrediction) ['x', 'y', 'z'] >>> model_path = temp_path + "/fpm_model" >>> fpm.save(model_path) >>> model2 = FPGrowthModel.load(model_path) >>> fpm.transform(data).take(1) == model2.transform(data).take(1) True
Methods
clear(param)
clear
Clears a param from the param map if it has been explicitly set.
copy([extra])
copy
Creates a copy of this instance with the same uid and some extra params.
explainParam(param)
explainParam
Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
explainParams()
explainParams
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])
extractParamMap
Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
fit(dataset[, params])
fit
Fits a model to the input dataset with optional parameters.
fitMultiple(dataset, paramMaps)
fitMultiple
Fits a model to the input dataset for each param map in paramMaps.
getItemsCol()
getItemsCol
Gets the value of itemsCol or its default value.
getMinConfidence()
getMinConfidence
Gets the value of minConfidence or its default value.
getMinSupport()
getMinSupport
Gets the value of minSupport or its default value.
getNumPartitions()
getNumPartitions
Gets the value of numPartitions or its default value.
numPartitions
getOrDefault(param)
getOrDefault
Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)
getParam
Gets a param by its name.
getPredictionCol()
getPredictionCol
Gets the value of predictionCol or its default value.
hasDefault(param)
hasDefault
Checks whether a param has a default value.
hasParam(paramName)
hasParam
Tests whether this instance contains a param with a given (string) name.
isDefined(param)
isDefined
Checks whether a param is explicitly set by user or has a default value.
isSet(param)
isSet
Checks whether a param is explicitly set by user.
load(path)
load
Reads an ML instance from the input path, a shortcut of read().load(path).
read()
read
Returns an MLReader instance for this class.
save(path)
save
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.
set(param, value)
set
Sets a parameter in the embedded param map.
setItemsCol(value)
setItemsCol
Sets the value of itemsCol.
itemsCol
setMinConfidence(value)
setMinConfidence
Sets the value of minConfidence.
minConfidence
setMinSupport(value)
setMinSupport
Sets the value of minSupport.
minSupport
setNumPartitions(value)
setNumPartitions
Sets the value of numPartitions.
setParams(self, \*[, minSupport, …])
setParams
setPredictionCol(value)
setPredictionCol
Sets the value of predictionCol.
predictionCol
write()
write
Returns an MLWriter instance for this ML instance.
Attributes
params
Returns all params ordered by name.
Methods Documentation
Creates a copy of this instance with the same uid and some extra params. This implementation first calls Params.copy and then make a copy of the companion Java pipeline component with extra params. So both the Python wrapper and the Java pipeline component get copied.
Extra parameters to copy to the new instance
JavaParams
Copy of this instance
extra param values
merged param map
New in version 1.3.0.
pyspark.sql.DataFrame
input dataset.
an optional param map that overrides embedded params. If a list/tuple of param maps is given, this calls fit on each param map and returns a list of models.
Transformer
fitted model(s)
New in version 2.3.0.
collections.abc.Sequence
A Sequence of param maps.
_FitMultipleIterator
A thread safe iterable which contains one model for each param map. Each call to next(modelIterator) will return (index, model) where model was fit using paramMaps[index]. index values may not be sequential.
Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
Attributes Documentation
Returns all params ordered by name. The default implementation uses dir() to get all attributes of type Param.
dir()
Param